龙王小说网

手机浏览器扫描二维码访问

第二十章 欧几里得算法(第1页)

欧几里得学生卡农对欧几里得说:“如果可以可靠的求出两个数字的最大公约数?”

欧几里得说:“用辗转相除法就可以,如果求a和b的最大公约数,如果a大于b,那就是a除以b,然后得到余数,然后再让除数b除以余数,然后一直让除数除以余数,最后余数为0的时候,得到的除数就是a和b的最大公约数。”

卡农说:“假如说1997和615这两个数字。”

欧几里得说:“1997除以615,等于3余出152。”

卡农说:“然后怎么求?”

欧几里得说:“除数除以余数,615除以152等于4余7.”

卡农说:“然后152除以7等于21余5.”

欧几里得接着说:“没错,然后7除以5,等于1余2.”

卡农说:“5除以2,等于2余1.”

欧几里得说:“2除以1,等于2余0.”

卡农说:“不能再往下了,余数已经为0,所以1997和615的最大公约数为1.”

欧几里得说:“所以说,相当于没有最大公约数。”

在以上基础上,后来数学中发展了环的概念,整环R是符合一下接个要求的:

1、A关于加法成为一个Abel群(其零元素记作0);

2、乘法满足结合律:(a*b)*c=a*(b*c);

3、乘法对加法满足分配律:a*(b+c)=a*b+a*c,(a+b)*c=a*c+b*c;

如果环A还满足以下乘法交换律,则称为“交换环”

4、乘法交换律:a*b=b*a。

如果交换环A还满足以下两条件,就称为“整环”

(integraldomain):

5、A中存在非零的乘法单位元,即存在A中的一个元素,记作1,满足:1不等于0,且对任意a,有:e*a=a*e=a;

6、ab=0=>a=0或b=0。

而后来也引入了欧几里得整环的概念,这是抽象代数中,这是一种能作辗转相除法的整环。

凡欧几里得整环必为主理想环。

喜欢数学心请大家收藏:(aiquwx)数学心

请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。

弃我选白月光?我离婚你疯什么!  我与仙子不两立  糟了,那妖女也重生了!  和扶弟魔老婆离婚后,我送她全家升天  重生79,离婚后知青老婆她后悔了  从流民到皇帝,朕这一生如履薄冰  离婚后,傅先生对她俯首称臣  重生1961,开局相亲对象就被截胡!  要离婚你高冷,再婚又发疯?  重回97:你说青花瓷是破烂,三毛一斤卖不  苟在末日,独自修仙  一本杂录  直播科普帝皇铠甲,国家疯狂打榜  带白月光回家,我离婚你悔啥?  死亡来信  系统盯上龙椅后,公主天天作死  聊天群:开局获得赛亚人血脉  CS:不是,你的残局靠请神啊?  末世降临:我招收下属,获得百倍物资  全家逼我离婚,现在后悔有用么  

热门小说推荐
相逢是前世注定

相逢是前世注定

不要了疼。忍一忍,马上就好了。男人抓住她的手,为她擦药。男朋友敢玩劈腿,她就敢给他戴绿帽子。她倒是要看看,最后谁先玩死谁。只是,三无老公摇身一变竟然成为了A国人人趋之若鹜的新贵,苏简溪接受无能。她的丈夫确实没车没房,但人家有别墅有游轮还有私人飞机啊。都说苏简溪是狐狸精,傍上金主不说,还让人家当了接盘侠。事后还是厉霆骁亲自辟谣是他追的苏简溪,孩子是亲生的!...

我不想再陪仙二代渡劫了

我不想再陪仙二代渡劫了

天降亿万古宅必有坑。继承老宅开心不到一秒,就被告知此宅欠了银行三百万!空降仙君必作妖!什么?你告诉我这宅子是专门引渡你们这些修仙学员下凡渡劫的?我还要帮你...

无敌血脉

无敌血脉

无垠宇宙,血脉为尊!出生决定一切,超品血脉者,生有神通,移山填海,捉星拿月,十品废脉者,寿不过百,前途灰暗,蝼蚁一生!少年杨帆,七星宗一普通杂役,注定碌碌一生,怎知偶有奇遇,得至宝吞噬,吞无尽血脉,成无上圣脉,无敌天下,谁人不服?...

蛇骨

蛇骨

我出生时,左手腕上缠着一条蛇骨,骨刺深深插入肉中。十八年后,白水出现在我面前,许诺与我血肉相缠。可结果,却比刮骨更让我生痛。蛇骨性邪,可又有什么比人心更邪?...

回到三国战五胡

回到三国战五胡

这是东汉末年的时代,又不同于记忆中的那个东汉末年。当三国演义的撒豆成兵成了真,最强鲜卑,最强契丹,最强蒙古,最强女真,最强突厥,盘踞在汉室的塞北之地,对大汉疆域虎视眈眈。零散的召唤异族势力,更散布大汉边陲,谁说开局不利,就不能染指大好江山?金戈铁马的战场,热血沸腾的争霸,是属于这个时代的主旋律,这里是属于最强者的时...

每日热搜小说推荐